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In the IYRU Permanent Committee's opinion, the distribution of mass should be controlled in a One Design class : 
" IYRU 1967 Amendments to the rules of the 
International Finn Class". 
 
 
 
 
 
 
 
 
 
 
 
 
 

  INTR0DUCTI0N 
 
 

This memorandum comprises two parts 

In the first one, I have tried to show that the distribution of masses or matter  in a boat plays a 
dominant part in the losses of its propulsive power. Will the reader, please, forgive me for 
resorting to mathematical demonstrations; if I am not making myself clear, he may go straight 
over to my conclusions ! 
 
In the second part, I explain the measuring method we have adopted after many trials. 
 
 

 

 

 

 

Gilbert LAMBOLEY  
may 1971 

Revised may 2003 
 
 

 
PS  The expression “weight distribution” is scientifically incorrect; “mass distribution” or “matter 
distribution” must be used ; weight is the effort applied to mass by gravity only ; in this paper we shall 
examine the effects of other accelerations than vector gravity g. 

 
 
 

 

 
I   PART ONE  : THEORETICAL ANALYSIS 
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EFFECTS of the DISTRIBUTION of MASSES 

 
 
 
 
 
 
 
 
 

I – 1,   DEFINITIONS 
 
 
 
 
 
 
 
      Figure 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
In Fig 1,  if G is the centre of gravity, the boat may be considered as a large number of small 
units of mass δm ; if d is their distance from the transverse axis Gx passing through the centre 
of gravity G, one usually call: 
 
m, total mass of the boat    ∑= mm δ  

Moment of masses inertia around that axis, the sum of all δm.d2 terms, i.e. ∑= 2.dmIGx δ  

Radius of gyration around the same axis, a length  rx such that    2
xGx rmI ∑=  

 
 



4 

Figure 2 

Floatation area, the area inside waterline : S 
Geometrical inertia of floatation area : Jx or Jy 

Distance between centre of buoyancy and metacentre : ρ such that SJ=ρ  
 
Figure 2 above, second part of which is quite an approximation, shows how those may be altered 
by sea state. 
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I – 2,   BOAT’S MOVEMENT 
 
This movement may be split into six elementary ones : three translations and three rotations, 

 
 
 
 
 
 
 
 
 
 
 
   Figure 3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Sideways drift or sway along axis Gx, 
Forward motion or surge along axis Gy,  
Up and down motion or heave along axis Gz, between crest and bottom of waves for instance, 
Pitching around axis Gx, 
Heeling  or rolling around axis Gy, 
Heading changes or yaw around axis Gz. 
Second appellation is related to oscillatory movements. 
 
Those movements are controlled by both actions of wind and sea. Those actions are so complex 
that the movement of the boat cannot be calculated (by Lagrange equations for instance). Only 
certainty is that they are not independent from each other. Nevertheless elementary movements 
may be tentatively analyzed separately. 
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Champions try to get the best forward motion they can. To do so they transfer as much energy as 
possible from the wind to the boat; part of that energy is stolen by supporting water, by 
displacement of that water and by friction of the boat wetted surface; another part is lost in the 
other five movements of the boat or in their variations. There comes a maximum speed 
(otherwise it would go on increasing) when water takes all the energy supplied by wind. Boat's 
energy being equal to ½ m.V2 ( m : boat's mass, V : speed), it is most important that overall 
vector speed V keeps as close as possible  to axis Gy. 
 
The five other boat movements not only absorb energy by themselves but they also absorb 
energy by parasite water movements they induce. 
 
 
 
I – 3,   PITCHING around AXIS Jx 
 
In figures 3 and 4, in order not to draw the boat three times, which would make the illustration 
less clear, we have shown normal waterline AA and waterlines EE and FF due to pitching. To 
understand the boat’s behaviour, please turn the paper back and forth so that the waterline 
remains horizontal. 
 
 
 
 
 
 
 
 
        Figure 4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Let us draw what happens.  
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Figure 3 shows the normal water line AA and another line EE forming angle α with AA, G 
the centre of gravity, CA and CE the centres of buoyancy (where Archimedes thrust is applied) 
for each one of the two waterlines ; W is the boat's mass equal to the buoyancy ; m being the 
boat mass : W=mg. The curve along which C moves is the buoyancy curve and CM remains 
at right angles to it. Thus lines CM remain tangential to a curve called developed metacentric 
(developed from buoyancy curve). 
 
The displaced volume of water V contained between the water plane and the wetted surface 
of the hull remains constant, its mass being W=mg . 
For small inclinations, the points ME remain close to a point M which is called metacentre (this 
metacentre is also the instantaneous rotation centre of immersed volumes), CM being the 
longitudinal metacentric radius ρx ; Since M is above G , the torque produced by Archimedes 
thrust and boat mass tends to bring the boat upright, that is to bring back line AA towards line 
EE. This torque is applied to axis Jx and for small pitching oscillations α, its value is : 
 

( ) ( )  msin   mg  sin  GM mg xx aga −≈−=×× ρααρα  
 

The equation governing α(t) is (t being time, with  
. d

dt
αα =  and 

2..

2t
αα ∂

=
∂

) : 

( )
..

( , )Jx xI mg a F tα α ρ α+ − =   with  2
Jx GxI I mb= +  

where F is the action of wind and sea. Supposing that the wind approximately equal the 
resistance of sea, and thus neglecting F, we find that 

( )
Jx

x

I
amg

withtA
−

==
ρ

ωωα sin    (ω being the pulsation) 

but, as 2mbII GxJx += , writing 2
xGx mrI =  , 

where rx is called radius of gyration around axis Gx,  
( )

22
x

x
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ag

+
−

=
ρ

ω  

The period of free pitching oscillations is :     ( )ag
rb

T
x

x

−
+

==
ρ

πωπ
22

22  

The energy associated to the movement is :   ( ) 2
2

222 AamgA
I

E x
Jx −== ρω  

The term 22
xrb +  has disappeared. 

 
When the positive action of wind is opposed to an equal and negative action of sea, that 
is to say when function F may be neglected, then the boat’s moment of inertia (or her 
masses distribution) has no effect on its free pitching energy. But the centre of gravity 
position has one through term a. 
 
 
In a Finn, ρx  measures about 12 m, boat’s mass being equal to 145 kg 

The Finns I was able to inspect had radius of gyration rx comprised between 1,12 m and 
1,34 m and distances a comprised between 8 and 17 cm. 
The energy associated (boat alone) would then be comprised between 
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 mNewtonAgAE ×=××= 22 841483.11
2

145
 

and 

    mNewtonAgAE ×=××= 22 847892.11
2

145  

The ratio is 1.008. The influence of a is certainly less than the helmsman’s mass and 
position. 
 
Anyhow, any pitching energy due to helmsman’s movements, for instance, will be taken 
from forward motion energy. 
 
In the above demonstration, all other movements else than pitching have been ignored. 
Yet they are more or less connected together : the boat itself creates its wake and waves ; 
thus sea never appears flat to the boat and the metacentre position is altered according to 
pitching angle α. 
 
Nevertheless it appears that, on a smooth sea, there is no direct connection between 
pitching and radius of gyration or masses distribution. 
 
 
 
 
 
I – 4,   ACTION of SEA ; WAVES MOTION 
 
This motion is still poorly understood. Therefore we will select the simplest theory 
formulated by GERSTNER. (Fig.5) 
 

 
 
 
 
 
 
 
 
 
 
 
Figure 5 
 
 
 

 
The liquid particles P, which would be set at same level z=b when at rest, are situated on 
a trochoïdal curve which is produced in following way :  
a circle C, centre of which is O (x=a, z=b), rolls without slipping under the horizontal 
line ∆ set at distance L/2π above z=b. Point P is attached to C plane at distance OP=r 
so that 
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LbeLr π

π
2

2
−=  

 
Tangent PQ to that trcochoïd is perpendicular to tP and t is the instantaneous centre of 
rotation. 
P takes a time T to go around the full circle and to come back at initial position, this 
time being the wave period. Rotation speed of P is ω=2π/T. If the waves move towards 
Ox , the particles rotate clockwise.  
That shows the speed direction of the particles at each point.  
 
The surface particles are interesting to follow ; we see immediately that at wave crest, 
those particles always move in the direction of the waves. 
On the lee side of the wave crest, the movement is upwards. 
On the windward side, it is downwards ( Man overboard must face waves for safety, not 
to be overturned face down). 
 
The period T and the wave length L are connected by T2=2πL/g (g being gravity 
acceleration). The speed of wave propagation c (celerity) c=L/T=gT/2π ; it is also the 
speed of particles at wave crests. It is therefore the added ground speed of a boat surfing 
a wave. 
 
 
 Numerically : 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

When the waves begin to break it is because the crest particles speed reach c value. 
Therefore watch out for the distance L between crests, have confidence in 
GERSTNER and you will surely know already how advantageous it is to remain 
on the wave crests on a reach and on a run ! 

Period  T 
(in seconds) 

Wave length  L 
   (in metres) 

Celerity  c 
(in metres per sec) 

1,7 4,50  2,6 

2 6 3,1 

4 25 6,2 

6 56 9,4 

8 100 12,5 

9 126 14,1 
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I– 5,   EFFECT of WAVES upon BOAT 

 
 

We are going to examine the boat in its most difficult behaviour, i.e. sailing against waves and 
wind. 

 
 
 
 
 
 
       L                   L 
 
 
 
Figure 6 
 
 
Fig. 6 - The boat climbs the wave, the water particles lift her and help her to move to level 
LL ; then they slow her down, more and more, up to the crest. The transom is the last part 
to be lifted by the particles. During all that time, the lifting motion converts the kinetic 
energy of the boat into potential energy and contributes to her slowing down. 
 
 
 
 
 
 
 
 
 

 
 
Fig, 7  - The boat has climbed the crest; she has been slowed down fully and the water 
particles will draw her to the bottom of the swell at an increasing rate ; the stem is first drawn 
down. The potential energy decreases and the speed increases. 
 
 
 
 
 
 
 
 
 

 

Fig, 8  - Once it has passed line LL the boat straightens up, its speed has reached a 
maximum at the bottom of the wave, it being helped by the water particles. 

 
In conclusion, the swell transfers three elementary motions to the boat : 

• a positive or negative forward motion which has an oscillatory look, 
• an up and down motion coupled to previous one, 
• a  pitching motion linked to previous ones. 
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Those elementary movements apply resisting and oscillatory actions to the boat. According to 
general physical laws, they tend to couple all elementary movements between themselves and 
to make them more or less oscillatory. 
We demonstrate below that  forced pitching motion absorbs an energy linked with the design 
of the boat and with its masses distribution. 
 

 
 
 
 
 
 
 
 

Positive pitching 
 
 
Figure 9 
 
 
 
 
 
 
 
 
 

Negative clockwise pitching 
 
 
Fig. 9  illustrates what happens to a boat in a chop and shows that the forced pitching due to 
the swell has quite a serious effect. Theory tells that the pitching motion of a boat is split up 
into a free oscillation of period TL relative to water, and a forced oscillation due to the swell, 
having a period TH , so that : 

t
TT

Tt H
LH

H
HLL ωϕωϕα sinsin 22

2

−
+=  

Period TL is small compared  to that of the swell (TL =0,6 sec whereas TH =2 sec for a severe 
chop). Also the amplitude ϕL of the free oscillations remains small and α may be 
approximated thus : 

t
TT

T
H

LH

H
H ωϕα sin22

2

−
=  

 
 
TH is much greater than TL so that it would seem that α remains close to 

 

1sinsin 22

2

≅
−

=
LH

H
HH TT

Tcetωϕα  

The boat should quietly follow the swell since her free pitching movement has been neglected. That 
forced pitching absorbs energy.  
 
At once two annoying events appear : 
 

• TH is a multiple of TL ; there is resonance and the amplitude grows out of all proportion ; 
should the swell be regular, it is sufficient to change the heading slightly to escape  resonance, but  
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from time to time one may be surprised by variations in TH making TH a multiple of TL and 
causing a sudden lurch. 

 
• The variations of TH are approximately equal to TL and the helmsman needs all his skill to 
avoid the impacts developing into continuous slamming. In this summary about wave motion we 
have seen that : 

 
gLTH π=2  

 
therefore a variation dTH corresponds to a variation dL in accordance with the relation : 

 

H
H gT

dL  dT π=  

 
For a wave length of 6 metres, we have seen that 

sec2=HT  

dTH could be equal to the boat free period T L ≅ 0,6 sec. , if 
 

mcdTdTgTdL HH
H 85.1===

π
 

 
dL is the variation in the wave crest spacing. It is normal to see a wave length vary by 30% since 
the choppier the sea, the closer the waves. 
 
For a wave length of 25 metres we would have   dL = 6,2 x 0,6 = 3,72 m 
this corresponding to a variation of 15% but there the helmsman has enough time to anticipate the 
impact and to change the boat's heading thus varying the wave length on which the boat travels. 

 
 
 

Yet things are not that simple. 
 
Action of water particles : 
 
Let us consider a boat whose quick works are close to surface. 
 
 
 
 
 
 
 
 
 
 
 
 
At the bottom of a wave, the boat approximately moves around point IB with a radius rB ≅ IBP such that 

Lb
B eLbr π

π
2

2
−+=
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On the crest of a wave the boat moves around a point IH with a radius rH ≅  IHP such that 

Lb
H eLbr π

π
2

2
−−=

 
 
There appears an energy induced by friction of water particles against the hull : 
 

( ) + 22221 IGrm xω  
 
 
IG varying between rB and rH. 
 
In a chop where IG is small, those losses of energy linked with masses distribution by parameter rX are 
relatively greater than in a large swell.  

 
 

General action of swell 
 
 
 
 
 
 
 
  Figure 11 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

On the crest of a wave, the boat pitches around a point IU, then the centre of rotation moves away 
towards infinity as the boat passes inflection point P, the slope passing through an extreme an the 
curvature through naught .When the boat moves along PVQ, the centre of her forced pitching returns 
from infinity to point IV and then goes back again to infinity (Fig 11). 
The pitching energy supplied by the swell to the boat is : 

( )22221 IGrm X +ω  
Point IV, because of the shape of the swell, is much farther from the boat than point IU. 

Actually, IU may undergo large variations and come to a minimum when waves come to break. If the 
boat was reduced to a point, IU would be on the crest. In fact, it is lower as the boat is supported over 
some length (Fig 12). 
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    G. 
 

Figure 12 
 
 
 
 

 
It also appears that the lower G, the less IUG. 
 
So at wave crests, forced pitching is more important and it is a fast one. It does not only induce a lost 
of energy but also an ugly behaviour of sails the top of them moving faster than the foot. 
 
 
 
 

 
I – 6,   YAW around axis Gz    
 
The above action of waves originates another forced oscillation around an axis parallel to Gz, located 
between bow and front edge of centerboard. 
 
When beating, the helmsman heads up to climb the wave (as his speed is less and apparent wind too), 
then he bears off down the wave (as apparent wind is stronger and veering). That yaw movement is 
continuous and oscillatory. It is controlled by the rudder. The greater the yaw energy, the greater the 
resistance of the rudder and the greater its slowing down action. 
 
Another recommended yaw action is the permanent search for the lowest water near the bow. 
Champions know that well as soon as sea becomes choppy.
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I – 7,   EFFECT of MASS DISTRIBUTION and of CENTRE of 
GRAVITY HEIGHT 

Masses distribution is characterized by the radius of gyration rX of the boat. 
We have already seen that it had no effect on the boat's free oscillation period TL. But 
in the case of irregular forced oscillations it has a great importance. If ω is the 
maximum angular speed of a forced oscillation, the energy absorbed by the boat in  
pitching is : 

( ) + 22221 IGrm xω  

Taken from forward energy, it is quickly spilled by water damping or by wave impacts. 
 
Let us tell it another way : when a boat crosses a wave, she is induced to pitch with a 
forced amplitude A ; A is higher when rX is higher and also when centre of gravity 
is higher. Pitching energy is taken from progressing energy because there would be 
no pitching should the boat move backwards as fast as the waves. After having 
passed the crest, the initiated pitching of amplitude A becomes a free pitching soon 
damped by water frictions. 
 
As is known by physics laws, resistant actions use to couple elementary oscillatory 
movements, which is another way of spilling forward energy through its partial 
oscillatory behaviour (boat progresses faster down waves and slower up waves). 
 
In order to reduce energy losses as much as possible, ( ) + 22221 IGrm xω should 
remain as low as possible. 
The angular speed ω is derived from swell ; m is fixed by boat design; but rx and IG 
may vary  in some degree if not controlled. The radius of gyration should be kept as 
low as possible and therefore all possible masses of materials should be gathered near 
the centre of gravity. 
When beating through wave crests, IG should also be as low as possible which leads 
to lower centre of gravity. 
 
The loss of energy due to yaw is directly linked with the rZ radius of gyration which 
is also characteristic of masses distribution. 
 
 
 
 
In the Finn class I was able to observe the two following extremes :  rx=1.12 m and rx 
=1.34 m. 
 
Neglecting IG, the energy stored at same angular speed ω varies by 

%43
12.1

12.134.1
2

22

=
−

 

Indeed, the difference is a great one ! 
 

 
 



17 

 
 
 

 
I – 8,  CONCLUSION 

The boat should move as lightly as possible in a swell. To do this, one tries to 
gather as much as possible of the matter near the centre of gravity. 
When we are carrying boats on shore, (and we all have done that), we sometimes 
feel that for a same given mass some boats are lighter and more easily handled 
than others. It is simply because the seemingly heavy ones have too much matter 
in the ends and that it is easier to handle concentrated matter then distributed 
matter. 
The waves supporting your craft have the same feeling and will consequently bear 
the boat lightly or heavily. This heaviness is characterized by the expression : 

 2221 xrmω  

where the radius of gyration rx representing the mass distribution is expressed as a 
square whereas the total mass m only comes in linearly. 
 
Similar problem with the yaw action of the rudder. 
 
For both movements m also appears in the propulsive power expression  221 mV  
 
In order that this energy be retained in spite of waves, it is better to keep an 
appreciable value for m. As regard Finns, that value is quite high and allows them 
to go through quite a steep chop. Those two main reasons will encourage to reduce 
rx or rZ rather then m. 
 
Last, it appears that masts, centre of gravity of which is far from overall centre, 
have a great influence. Multihulls which have high masts know well how important 
it is to lower mast mass and all racing multihulls are now equipped with carbon 
masts; carbon has a lower density but also higher yielding stresses, which allows 
thinner and lighter masts. 
 
 

 

 

 

 

 

 

 

 

 

 

 



18 

 

 

 

 
 

 
 
 

 
II   PART TWO   

 CONTROL of the MASS DISTRIBUTION 
 
 
 
 
 
 
 
 
 
 

II – 1,   NEED for CONTROL of  MASS DISTRIBUTION  
 
That control had been asked by IYRU, as mentioned in introduction and I believe that I have 
demonstrated that the desire of helmsmen to lighten the ends of their boats is not a passing mood.  
 
The mass distribution of a boat a seems to be even more important than the mass itself. To control 
this distribution there is no available instrument and for a long time people have tried to find a mean 
of control in as simple a manner as one can control mass i.e. with a scale. 
 
When mass distribution could not be measured, it could be observed that same helmsman and boat 
would win all regattas over the world. Since it may be measured, nobody may tell who will win. 
 
Still now, 30 years after, no Finn helmsman would sail a boat over minimal radius of gyration and 
minimal height of centre of gravity. Those are now measured at factory. 
 
I do not know how the matter is ruled in other classes. But many ones, such as Flying Dutchmen, 
505, 470, Europe Moths, Dragons …. had asked me for apparatus and means of calculations. 
 
 
 
II - 2,   FORMER CONTROLS CARRIED out in the FINN CLASS 
 
Finn rule n° 3 told that the mass distribution should be as close as possible to that of a wooden boat 
with a hull of constant thickness throughout. 
 
The shifting of the centre of gravity by moving material was further restricted by a certain number of 
other rules such as : 
 

17) - Laminated wood and plastic construction together is not allowed. 
19) - The hull material must not contain trapped air cells.. Hollow reinforcing pieces must be 
left open et their ends. The hull thickness should always be greater then 3 mm. Mulls may have 
to be drilled in order that checks can he made. 
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20) - Wooden hulls should be at least 9 mm thick. Moulded wood should be made Lip of 
constant density layers. 
45 - 47 - 49) - Extremely accurate definition of the floor boards :  the material density is fixed. 
65) - Height of mast centre of gravity. 
79) - Restriction of openings in transom. 
98) -Forbidding the carrying of items which might serve as ballast. The inclusion of light or 
heavy materials in the construction is not allowed.. 
 

 
We had always known that those rules left some latitude to builders. Furthermore they were often 
imprecise and advantage was sometimes taken from that lack of precision. to hide some trickery (alas 
it had been known to happen !) 
 
Many Class owners’ associations had tried for a long time to find serious ways of measuring the 
distribution of mass. In fact several methods had been known for a long time but putting them into 
practice would have involved calculations that would frighten the measurers and be quite unusable in 
regatta conditions.  
Now computers and even pocket ones have allowed us to develop following procedure which has 
been found to be particularly simple. 
 
 

 
II – 3,   MEASUREMENT SYSTEM introduced by FINN CLASS 
 

 
Let us consider an object S oscillating around axis OX 

• with a radius of gyration rX  (I have shown in part 
one that this radius of gyration was a characteristic of 
mass distribution), 

• with a centre of gravity G, 
• at a distance a from G (Fig 1). 

 
We are dealing with a composite pendulum, the oscillation 
period of which around axis OX being (according to 
Huighens) : 

( )
ag

raT X
22

2 +
= π    (g = gravity acceleration) 

(We should note that those oscillations have nothing to do with those of a boat on water). 
 
If the position of the centre of gravity is known, a is known and by measuring period T, we 
immediately find rx. Actually a is difficult to assess and we have two unknowns : rx and a. If the 
object under examination is being made to oscillate successively around two parallel axis O1X and O2X 
separated by a known distance b, we can measure two oscillation period T1 and T2 around those two 

axis and we have two equations which allow to calculate rx and 
a (Fig 2). 

xa r
T

a g

2 2
1

1
1

2π
+

=  xa r
T

a g

2 2
2

2
2

2π
+

=  

with   baa =− 21  
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II – 4,   CALCULATION of a1, a2 and rX. 
 
In 1970 years we would draw graphs delivering solutions of above equations. Accurate drawing 
of those graphs had been made possible by use of electronic drawing machines driven by 
computer. Thus we could obtain values of rx and a with an accuracy of 0.1 mm. (Fig 7). 
 
Nowadays we may use programming pocket calculators which deliver the searched results. 

We find that  ( ) 2
2

2
22

1
2

221 4
2

4 ππ
bgTbbTTga +=



 +−  hence  a1 

and that 2
12

2
112

4
agTarX −=

π
    hence  rx 

Those calculations may be automated with a pocket calculator. 
 
For each class of boats, that they be centre board boats or keel boats, it appears that different 
values of b must be used so as to get maximum precision. 
 
 
 
II – 5,   POSITION of the CENTRE of GRAVITY 
 
 
Moreover the method provides the position of the centre of gravity  G . 
As G is in line with O1 and O 2, its fore and aft position may be located by the measurement of l  
(Fig 3). Then we will measure distance d between O1 and the underneath of hull (For Finns, it 
happens that O1 is always situated above the centreplate box and with a rule down the inside of 
that box one can easily measure d . The vertical position of the centre of gravity will thus be 
known from dimension h such that 

1adh −=  
 
 

 



21 

 
 
 
 
 
 
 

II – 6,   SETTING up AXIS 01 AND 02 in PRACTICE 
 
This is what took me the longest time. In the end, I found that the simplest way was to support the boat 
by the rubbing strakes. Therefore I made two brackets as illustrated in Fig 4  on which the boat could 
be hung. 
 
These items are cut out of a single 6 mm thick steel sheet and may to made by any metal worker. They 
weigh a little more then 1 kg each and combine with the boat's mass in its pitching motion, but being 
very close to the centre of gravity G they hardly affect the radius of gyration rx (Fig.4). 

 
Steel parts in contact must be hardened by cementation. 
 
Figure 5 shows how to set up the apparatus. 
Two trestles bear steel pivots; those pivots are made of T bars sharpened into knife edges which are 
meant to be the oscillating axis. 
Two countermasses are attached on either sides of the trestles (unless the latter are fixed to the floor; 
which allows to retain them in position at all times with the pivots well lined up). 
 
All you have to do is to bring the boat between the trestles and hang it onto the pivots, either at  O1 or 
at O2 and to shift it slightly until it is approximately horizontal when at rest. 
In a sheltered place the oscillations are damped in approximately 100 periods, making a perfect 
pendulum. 
 
I have tried to offset the pivots by combining the rotation around axis O1 or O2 with a transverse 
rocking motion. We took measurements at CASCAIS Gold Cup (1970) in the open and in a strong 
wind (this is actually not recommended). I have always found that the lengthwise pitching period was 
not affected and remained constant within a few hundredths of a second. 
 
Nevertheless, according to pendulum theory, the oscillations must keep small amplitudes and must be 
damped as less as possible. 
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II – 7,   MEASUREMENT OF PERIODS T 
 
This is the operation requiring the most care. 
 
 Present Finn rules tell :  
 

MASS DISTRIBUTION AND CENTRE OF GRAVITY PRACTICE 

It is essential that the measurements be made in a sheltered place. The boat shall be hung from the brackets on 
axis O1, O2, and the periods of oscillation T1, T2 measured. 
 Plot the position with co-ordinates T1, T2 on the graph, and read off the values for a and rX from the curves. The 
distance l is measured parallel to base line from Station 0 to axis O1…. 
The distance d can usually be measured from axis 01 to the underneath of the hull (excluding keel band) by means 
of a rule or tape passed down through the centreboard box. If this is impossible, use the principle shown in 
diagram …. It is wise to provide a protection under the boat but the boat shall not touch anything while 
oscillating. The oscillations shall be small, but should not become damped in less than about 100 periods. There 
shall be no twisting oscillations about a vertical axis There shall be no movement of the supports. The 
measurement of periods T1 and T2 requires most care. It is recommended to operate in the following way: two 
time keepers stand on either side of the boat, they shall start their stopwatches when the boat passes the rest 
position which is made easier with two rods placed opposite each other as in fig 6 : they count ten pitching 
periods and if they get the same result within 0.1s, the measurement is satisfactory (the result being thus 0.01s 
accurate). 
Stopwatches accurate to 0.05s, shall be used. If a stopwatch only accurate to o.1s is used, twenty pitching 
periods shall be measured. 

 
On cover, we give a copy of the graph included with each owner’s certificate book 
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At Gold Cups (Finn world championship) over 100 boats may be measured in less than one day. 
 
 
 
 
 
 
 
 
 
II – 8,   ACCURACY of RESULTS 
 
We have designed an accurate and practical way of detecting the mass distribution in a boat. 
The abstract of graph which can be seen on Fig 7 shows that the value of a plays a prominent part in 
the accuracy of results. 
The smaller the value of a, the more accurate the results. This means that the boat must be hung up as 
close as possible to the centre of gravity. There we have to agree to a compromise between the 
simplicity of the bearing apparatus and the value of a1. 
 
The apparatus used by Finns, enables to bring the values of a1 down to about 0,45 m. 
For such a value, Figure 7 illustrates the consequences of sec01.0±  and sec02.0±  errors in the 
measurement of T1 and T2. An accuracy of sec01.0±  upon T1 and T2 leads to an accuracy of cm1±  
upon rX and  cm5.0±  upon a1. 
 
The comparison between an automatic measurement (which I first designed) and a hand measurement 
enabled me to check that a human time keeper could time with an accuracy of sec05.0±  (I was not 
expecting such an accuracy). Over ten periods he will, therefore, make a total error of less than 

sec1.0± , i..e. sec01.0±  for one period) ; rX and a can then be gauged with the precision indicated 
above. 
 

 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



II – 9,  EXTENSION of the METHOD to other CLASSES 
 
The method is directly applicable to all dinghy classes as we already have stated. As far as I 
know, it as been enforced or currently used by 
• Europe  
• Flying Dutchman  
• Yingling  
• Star  
• 505 
• 470 
• Tornado 
• …….. 
 
As regards heavy boats, it may be adapted as shown on underneath sketch although a better 
apparatus may be found such as  sort of cradle. 

 



Handicap rules should take radius of gyration into account. And it would not be that complicated 
for builders to have those radius being measured. 
 
 
One class of keel boats (Stars ?) had tried to measure yaw oscillation periods around a vertical 
axis, the boat being called back by a couple of springs tied at bow. But the results were not 
consistent depending of springs tensions and of fixations. 
Furthermore the method allowed to measure the inertia IZ of the boat around her vertical axis GZ 
and it could not give the height of the centre of gravity. In a keel boat, the keel has an important 
effect upon the pitching energy ; the keel being close to GZ , its effect is little in yaw 
movements. 
Yet the method showed to be so simple that it could turn performing by using a blade to hang the 
boat as on underneath sketch. 
Should the torsion rigidity of the blade be K, the oscillatory movement of the boat around GZ 
would be such that : 

ZI K
t

2
0θ θ∂

+ =
∂

  with a period  
K
IT zπ2=  

and the moment of inertia around GZ should immediately be known ; that moment being also 
characteristic of masses distribution around an axis passing through G. 
Actually two blades at right angle should be used so as to avoid parasite bending oscillations. 
Blades are precise tools and are used, for instance to measure the thrust of plane engines. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
At 1984 Olympics, Peter Hinrichsen used a clever way to check the yaw moment of inertia IZ of 
Flying Dutchmen around vertical axis GZ . That method may easily be applied to keel boats.  
Calling back moment was produced by two parallel wires suspending the boat. Should the length 
of wires be l and their distance 2d, the yaw rigidity is found to be : 

2

2 dK mg
l

= , thus pulsation is 
z

K
I

ω =  and yaw radius of gyration is 2zr T d g lπ=  

How simple ! 



 
 
II – 10, DIFFERENT  WAYS OF  FINDING  « a » AND « ρ  »  
FROM  MEASURED OSCILLATING PERIODS T1 AND T2 

 

Recalling Principles for controlling Mass Distribution and position of Centre of 
Gravity: 

 
The degree of concentration of the masses (or of the matter) in a boat is described by her radius of gyration. A boat 
with "light ends" has a short radius of gyration and moves more easily through waves.  

In Diagram 20 of measurement rules, if "a" is the distance from the oscillation axis 01 to the centre of gravity G, if  
"ρ" is the radius of gyration, and if  "g" is the acceleration due to gravity, then the oscillating period T1 is given 
with a good precision for small and little damped oscillations*  by : 

aT
ag

2 2

1 2 ρπ +
=  

We can measure T1 but we have two unknowns "a" and "ρ"; so we need two equations. Another is obtained by 
choosing a new oscillation axis 02 exactly b=200 mm lower. New period will be 

 

( )
( )

2 2

2 2
a b

T
a b g

ρ
π

− +
=

−
 

Hence by measuring T1 and T2 we may find  "a" and "ρ” from either underneath program or graph (to be redrawn 
with nowadays current tools). 

 

Finding  "a" and " ρ ” with a pocket calculator program : 
It is now easier to use a pocket calculator with a program of following type: 

Input  T1  (sec) 

Input  T2  (sec) 

Input  b=0.2 (m)  

Input g  (m/sec2) 

Calculate  
gk

b24π
=  

Calculate  
( )

kT
a b

k T T

2
2

2 2
2 1

1
2

+
=

− +
 

Calculate  abkT a2 2
1ρ = −  

Show or print  a  and  ρ  (m) 

Check program with  2
1 29.80 / sec 3.31 sec 3.81 secg m T T= = =   

 Result should be   0.593 1.123a m mρ= =  



 

Finding  "a" and " ρ ” from Excel 
 

b= 0,2 k= 1,2411845

T1 (sec) = 3,31 0,59256251 m
T2 (sec) = 3,81 1,12270514 mρ =

INITIAL  DATA

Results
a =

Measurements

29.8 / secg m=

 
 

In that Excel Table, all calculations have been prepared, so that from any PC having Excel program, a and ρ will 
immediately appear if the measured values replace the values 1 3.31 secT =  and 1 3.81 secT = in above 
example. 

 

Finding "a" and " ρ ” from graph  
 

aT
ag

2 2

1 2 ρπ +
=  may also be written  2 2 2

1 24
aga Tρ
π

+ =   and also  

2 2
2 2 2

1 12 24 8
g ga T Tρ
π π

   − + =   
   

 

 

Last equation is that of a circle of coordinates ,a ρ  , radius of which being 2
1 28

gT
π

, centre of which being at 

2
1 1 12 , 0

4c c
ga T ρ
π

= =  . 

 
 

 
( )

( )

2 2

2 2
a b

T
a b g

ρ
π

− +
=

−
is also the equation of a circle of coordinates  ,a ρ , radius of which being 

2
2 28

gT b
π

+ , centre of which being at 2
2 2 22 , 0

4c c
ga T b ρ
π

= + =  

 
Searched ,a ρ  are at the intersections of the above circles which vary according to parameters 1 2,T T . Those 

families of circles might even be drawn by hand.  Interesting parts of them have been taken out to achieve attached 
graph.  
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